张华伟    植物基因组编辑实验室主任  


邮箱:huawei.zhang@pku-iaas.edu.cn
研究方向:
植物基因组编辑




个人简介:

       2005年9月 – 2011年7月,中国科学院遗传与发育生物学研究所,博士;

       2011年8月 – 2013年7月,中国科学院遗传与发育生物学研究所,博士后;

       2013年8月 – 2019年12月,中国科学院遗传与发育生物学研究所,助理研究员,副研究员;       
       2019年12月至今,北京大学现代农业研究院,研究员。

 

重要荣誉及奖励:

2020 山东省杰出青年基金

2020 泰山学者青年基金

2021 国务院特殊津贴

 

学术兼职:

Frontiers in Genome Editing 杂志编委

 

研究方向:

 以CRISPR/Cas9位代表的基因组编辑技术可以在基因组上对DNA序列进行定点改造,其在基因功能研究和改造、生物医学和植物遗传改良等方面都具有重大的应用价值。然而,现在的植物基因编辑工具各自有其局限性,而且很多基因编辑作物仍然受到监管限制。本实验室的主要研究方向包括:

(1)新型高效精准编辑工具的开发

(2)新型编辑载体递送工具的开发

(3)高效transgene-free编辑策略开发

(4)新型遗传转化体系的开发

 

研究成果:

       研究成果相继发表于 Nature Biotechnology,Nature Plants,Genome Biology,Plant Cell ,Plant Physiology等国际顶尖/著名期刊,先后并被 Nature,Nature Review Molecular Cell Biology,Nature Plants,Genome Biology,National Science Review 等杂志报道或评述, 论文被引用5000余次。

       开发了多套创新型基因编辑工具,包括:

       在拟南芥中建立了基于GLABRA2(GL2)突变的可视化突变体筛选(GBVS)系统Plant Physiology, 2021

       建立了一套新型的编辑系统,能够实现可预测的精准基因组小片段删除(Nature Biotechnology, 2020);

       建立了能够同时完成敲除及单碱基替换的多效性编辑工具,用于作物改良过程中的多性状叠加(Science China Life Sciences,2020); 

在作物中,通过编辑翻译抑制元件uORF,开发了一种简单、通用的增强基因表达的方法,提出了一种替代传统转基因育种的新方法(Nature Biotechnology, 2018);     

       首次提出利用单碱基编辑技术对植物基因的特定剪接产物进行敲除,为 mRNA 可变剪接研究提供了一种重要方法(Science China Life Sciences,2018);

       解决了SpCas9 的高保真性变体eSpCas9和SpCas9-HF1编辑效率较低的相关机理,并提出利用tRNA-sgRNA 替代传统的 sgRNA,消除 SpCas9 的高保真性变体的活性对于靶位点序列的依赖性,提高了其通用性(Genome Biology,2017);

       首次提出将原核生物的 CRISPR/Cas9免疫系统引入植物中,建立基于 CRISPR/Cas9 的植物抗病毒系统,为植物抗病毒育种提供了一种新的思路(Nature Plants,2015)。 

同时,本实验室攻克了西瓜遗传转化难题,在西瓜中实现了高效遗传转化及基因编辑。

 欢迎感兴趣的学生、青年学者和业界人士咨询、加盟!

 

代表性论文:#,equal contribution; *,corresponding)

1.Wenbo Pan#, Weiwei Li#, Lijing Liu*, and Huawei Zhang*. (2022) Antiviral strategies: What can we learn from natural reservoirs? Journal of Integrative Plant Biology. 64(10):1849-1855.

2.Xiaoyong Gu, Lijing Liu* and Huawei Zhang*. (2021) Transgene-free genome editing in plants. Frontiers in genome editing. 3:805317.

3.Xiangjiu Kong#, Wenbo Pan#, Nengxu Sun, Tingyu Zhang, Lijing Liu* and Huawei Zhang*. (2021) GLABRA2-based selection efficiently enriches Cas9-generated nonchimeric mutants in the T1 generation. Plant Physiology. 187(2):758-768.

4.Shengxing Wang#, Yuan Zong#, Qiupeng Lin#, Huawei Zhang#, Zhuangzhuang Chai, Dandan Zhang, Kunling Chen, Jin-Long Qiu & Caixia Gao*. (2020). Precise, predictable multi-nucleotide deletions in rice and wheat using APOBEC–Cas9. Nature Biotechnology. 38. 1460~1465.

5.Rong Fan#, Zhuangzhuang Chai#, Sinian Xing, Kunling Chen, Fengti Qiu, Tuanyao Chai, Jin-Long Qiu, Zhengbin Zhang*, Huawei Zhang* & Caixia Gao*. (2020). Shortening the sgRNA-DNA interface enables SpCas9 and eSpCas9(1.1) to nick the target DNA strand. Science China Life Sciences. 63, 1619–1630.(封面文章)

6. Huawei Zhang#, Xiaomin Si#, Xiang Ji#, Rong Fan, Jinxing Liu, Kunling Chen, Daowen Wang & Caixia Gao*. (2018). Genome editing of upstream open reading frames enables translational control in plants. Nature Biotechnology. 36(9): 894~898 (被 National Science Review 撰文评述).

7. Chenxiao Xue#, Huawei Zhang#, Qiupeng Lin, Rong Fan & Caixia Gao*. (2018). Manipulating mRNA splicing by base editing in plants. Science China Life Sciences. 61(11): 1293~1300 (封面文章)

8. Dingbo Zhang#, Huawei Zhang#, Tingdong Li, Kunling Chen, Jin-Long Qiu & Caixia Gao. (2017). Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases. Genome Biology, 18(1): 191~191

9.Xiang Ji#, Huawei Zhang#, Yi Zhang, Yanpeng Wang & Caixia Gao. (2015). Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nature Plants, 2015.9.28, 1(10) (被 Nature、Nature Review Molecular Cell Biology、Nature Plants、Genome Biology 杂志撰文评述,是 Nature Plants 杂志建刊以来引用次数最高的 10 篇文章之一)

10. Huawei Zhang, Feng Cui, Yaorong Wu, Lijuan Lou, Lijing Liu, Miaomiao Tian, Yuese Ning, Kai Shu, Sanyuan Tang, Qi Xie. (2015). The RING Finger Ubiquitin E3 Ligase SDIR1 Targets SDIR1-INTERACTING PROTEIN1 for Degradation to Modulate the Salt Stress Response and ABA Signaling in Arabidopsis. The Plant Cell. 27 (1) 214-227