
刘晓芹 花生功能基因组学与种质资源创新实验室主任
邮箱:xiaoqin.liu@pku-iaas.edu.cn
研究方向:花生基因组学、果针向地性和荚果发育的遗传调控、花生-微生物互作与性状改良、花生种质资源评价和精准分子育种
个人简介:
2010-2015,南京农业大学,博士
2015-2018,北京大学,博士后
2018-2019,山东农业大学,副教授
2018-2021,美国普渡大学,博士后
2021-至今,北京大学现代农业研究院,研究员
主要荣誉:
2021年 山东省“泰山学者”青年专家
2022年 全国青年岗位能手
2022年 潍坊市三八红旗手
主要研究领域:
以花生为研究对象,研究目标主要围绕花生功能基因组学与种质资源创新。利用正向与反向遗传学、基因组学等多组学、分子和生化等方法开展重要农艺性状调控基因的定位、克隆和功能分析,系统解析花生发育和环境互作的调控机制,并进行花生的遗传改良和种质创新。重点包括:1、花生-微生物互作与性状改良机制研究;2、利用多组学挖掘花生群体的调控性状及物种进化趋势;3、花生荚果发育-环境互作关系解析;4、花生营养高效吸收利用研究;5、花生种质资源评价和花生精准分子育种创新。
代表性论文:
(#通讯作者;*第一作者)
1. Cui Y, Su Y, Bian J, Han X, Guo H, Yang Z, Chen Y, Li L, Li T, Deng X W, Liu X#. Single-nucleus RNA and ATAC sequencing analyses provide molecular insights into early pod development of peanut fruit. Plant Com. (2024). doi: https://doi.org/10.1016/ j. xplc.2024.100979.
2. Wang W, Bian J, Cui Y, Guo H, He L, Liu X, Li Zh, Ma J, Liu X#. Determgination of the regulatory network of two bZIP transcription factors, AhHYH and AhHY5, in light signal regulation in peanut by DAP-seq. Curr Plant Biol. (2024). Volume 38, June 2024, 100352.
3. Wang, W, Bian J, Guo H, Liu X#. Identification of the post-transcriptional regulation reveals complexity in peanut pod development by Direct RNA. aBIOTECH. (2025) https://doi.org/10.1007/s42994-025-00224-5.
4. Cui Y, Zhang Q, Meng Q, Liu X, Liu, X#. The peanut Ubiquitin4 promoter drives stable gene
overexpression and efficient multiplex CRISPR/Cas9 gene editing in peanut. aBIOTECH. (2025). https://doi.org/10.1007/s42994-025-00230-7
5. Wang W, Liu, X, Liu C, Liu X#. Genome-Wide Analysis and Expression Proffles of AhCOLs Family in Peanut (Arachis hypogaea L.). Int. J. Mol. Sci. (2025). 26, 3404. https:// doi.org/10.3390/ijms26073404
6. Cui Y, Guo H, Wang Q, Meng Q, Li T, Liu, X#. Ethylene enhances peanut seed germination by modulating hormonal and metabolic pathways. Seed Biology. (2025). 4: e005 https://doi.org/10.48130/seedbio-0025-0005
7. Wang W, Bian J, Liu X, Liu X#. Characterization of the N6-Methyladenosine Gene Family in Peanuts and Its Role in Abiotic Stress. Int. J. Plant Biol. (2025). 16, 7. https://doi.org/10.3390/ijpb16010007.
8. Yan P, Yan Z, Liu X#, Nie X#. (2024). Transcriptome-wide m6A methylation profile reveals its potential role underlying drought response in wheat (Triticum aestivum L.). Planta. ID: 27864757-9049-4130-9ce0-dfe8dfb5aa6b.
9. Bian J, Cui Y, Li J, Guan Y, Tian S, Liu X#. (2023). Genome-wide analysis of PIN genes in cultivated peanuts (Arachis hypogaea L.): identification, subcellular localization, evolution, and expression patterns. BMC Genomics 24:629.
10. Cui Y, Bian J, Guan Y, Xu F, Han X, Deng X W#, and Liu X#. (2022). Genome-Wide Analysis and Expression Profiles of Ethylene Signal Genes and Apetala2/Ethylene-Responsive Factors in Peanut (Arachis hypogaea L.). Front. Plant Sci. March 17; 13:828482.
11. Cui Y, Bian J, Lv Y, Li J, Deng X W #, and Liu X#. (2022). Analysis of the Transcriptional Dynamics of Regulatory Genes During Peanut Pod Development Caused by Darkness and Mechanical Stress. Front. Plant Sci. May 26; 13:904162.
12. Yang G, Deng P, Guo Q, Shi T, Pan W, Cui L, Liu X#, Nie X#. (2022). Population transcriptomic analysis identifies the comprehensive lncRNAs landscape of spike in wheat (Triticum aestivum L.). BMC Plant Biology. August 01; 22: 450.2022.22:450.
13. Lei P, Ai Q, Xiong Z, Lu J, Wei X, Song W, Liu X#, Nie X#. (2022). Patterns and impacting factors of gene evolutionary rate between wild and cultivated 2 emmer wheat (Triticum turgidum. L). Journal of Systematics and Evolution. April 08; doi: 10.1111/jse.12852.
14. Liu X, Liu R, Yue L, Zhong S, Shi H. (2017). EIN3 and PIF3 Form an Interdependent Module that Represses Chloroplast Development in Buried Seedlings. The Plant Cell. November 07; 29: 3051-3067.
15. Liu X, Li Y, Zhong S. (2017). Interplay between Light and Plant Hormones in the Control of Arabidopsis Seedling Chlorophyll Biosynthesis. Frontiers in Plant Science. August 17; 8: 1433.
16. Liu X, Huang D, Tao J, M AJ, Fan X, Xu G. (2014). Identification and functional assay of the interaction motifs in the partner protein OsNAR2.1 of the two-component system for high-affinity nitrate transport. New Phytologist. Aug 01;204: 74-80.
17. Liu X, Feng H, Huang D, Fan X, Xu G. (2015). Two short sequences in the promoter of OsNAR2.1 are necessary for fully activating the nitrate induced gene expression in rice. Scientific Reports. July 07; 5:11950.
18. Chen J*, Liu X*, Liu S, Fan X, Zhao L, Song M, Fan X, Xu G. (2020). Co-overexpression of OsNAR2.1 and OsNRT2.3a increased agronomic nitrogen use efficiency in transgenic rice plants. Frontiers in Plant Science. Aug 01; 11: 1245.
19. Pan J, Li X, Fu C, Bian J, Wang Z, Yu C, Liu X, Wang G, Tian R, Song X, Li C, Xia H, Zhao S, Hou L, Meng G, Wang X, Zhao C. (2024). High‑density bin‑based genetic map reveals a 530‑kb chromosome segment derived from wild peanut contributing to late leaf spot resistance. TAG. 137:69
20. Chen X, Liu Y, Lv K, Wang M, Liu X, Li B. (2023). FASTdRNA: a workflow for the analysis of ONT direct RNA sequencing. Bioinform Adv. Jul 20;3(1).
21. Zhou X, J Condori-Apfata, Liu X, S Condori-Pacsi, M Valderrama Valencia, Zhang C. (2021). Transcriptomic Changes Induced by Drought Stress in Hardneck Garlic during the Bolting/Bulbing Stage. Agronomy. January ;11: 246.
22. Zhou X, Dou Y, Huang X, Li G, Zhang H, Jiang D, J Condori-Apfata, Liu X, S Condori Pacsi, R Alvarez, M Elizabeth Mayta Anco, H Rodriguez, M Valencia, Zhang C. (2021). Using Principal Component Analysis and RNA-Seq to Identify Candidate Genes that Control Salt Tolerance in Garlic (Allium sativum L.). Agronomy. April;11(4):691
23. S D. Daba, Liu X, U Aryal, M Mohammadi. (2020). A Proteomic Analysis of Grain Yield Related Traits in Wheat. AoB PLANTS. August 24; 12: plaa042.
24. Feng H, Fan X, Liu X, S QR, M AJ, Xu G. (2011). Multiple roles of nitrate transport accessory protein NAR2 in plants. Plant Signal and Behaviour. September 01, 6: 1286-1289.
25.李婷婷,刘晓芹#。 一种高效花生遗传转化体系的建立与优化。植物学报(2025).DOI: 10.11983/CBB25010
代表性科研项目:
1. 主持山东省重点研发计划(农业良种工程);2024LZGC035;200万;2024-2027.
2. 主持潍坊市科技发展计划项目;2024JZ0016; 5万; 2024-2026.
授权专利:
花生启动子及其应用,2022, ZL 202210193478.5
地方标准:
1. 绿色高油酸花生种植技术规程,TYXZZ 001-2024
2. 高油酸花生油低温压榨生产技术规程,TYXZZ 002-2024

